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P R E F A C EP R E F A C E

This is a textbook for the standard introductory differential equations course
taken by science and engineering students. Its updated content reflects the

wide availability of technical computing environments like Maple, Mathematica,
and MATLAB that now are used extensively by practicing engineers and scientists.
The traditional manual and symbolic methods are augmented with coverage also
of qualitative and computer-based methods that employ numerical computation and
graphical visualization to develop greater conceptual understanding. A bonus of
this more comprehensive approach is accessibility to a wider range of more realistic
applications of differential equations.

Principal Features of This Revision

This 5th edition is a comprehensive and wide-ranging revision.
In addition to fine-tuning the exposition (both text and graphics) in numerous

sections throughout the book, new applications have been inserted (including bio-
logical), and we have exploited throughout the new interactive computer technology
that is now available to students on devices ranging from desktop and laptop com-
puters to smart phones and graphing calculators. It also utilizes computer algebra
systems such as Mathematica, Maple, and MATLAB as well as online web sites
such as WolframjAlpha.

However, with a single exception of a new section inserted in Chapter 5 (noted
below), the classtested table of contents of the book remains unchanged. Therefore,
instructors’ notes and syllabi will not require revision to continue teaching with this
new edition.

A conspicuous feature of this edition is the insertion of about 80 new computer-
generated figures, many of them illustrating how interactive computer applications
with slider bars or touchpad controls can be used to change initial values or param-
eters in a differential equation, allowing the user to immediately see in real time the
resulting changes in the structure of its solutions.

Some illustrations of the various types of revision and updating exhibited in
this edition:

New Interactive Technology and Graphics New figures inserted through-
out illustrate the facility offered by modern computing technology platforms
for the user to interactively vary initial conditions and other parameters in
real time. Thus, using a mouse or touchpad, the initial point for an initial
value problem can be dragged to a new location, and the corresponding solu-
tion curve is automatically redrawn and dragged along with its initial point.
For instance, see the Sections 1.3 (page 40) application module and 3.1 (page
160). Using slider bars in an interactive graphic, the coefficients or other pa-
rameters in a linear system can be varied, and the corresponding changes in its
direction field and phase plane portrait are automatically shown; for instance,

9



Preface

see the application module for Section 5.3 (page 331). The number of terms
used from an infinite series solution of a differential equation can be varied,
and the resulting graphical change in the corresponding approximate solution
is shown immediately; see the Section 8.2 application module (page 528).

New Exposition In a number of sections, new text and graphics have been
inserted to enhance student understanding of the subject matter. For instance,
see the treatments of separable equations in Section 1.4 (page 42), linear equa-
tions in Section 1.5 (page 57), isolated critical points in Sections 6.1 (page
384) and 6.2 (page 395), and the new example in Section 9.6 (page 630)
showing a vibrating string with a momentary “flat spot.” Examples and ac-
companying graphics have been updated in Sections 2.4–2.6, 4.2, and 4.3 to
illustrate new graphing calculators.

New Content The single entirely new section for this edition is Section
5.3, which is devoted to the construction of a “gallery” of phase plane por-
traits illustrating all the possible geometric behaviors of solutions of the 2-
dimensional linear system x0 D Ax. In motivation and preparation for the
detailed study of eigenvalue-eigenvector methods in subsequent sections of
Chapter 5 (which then follow in the same order as in the previous edi-
tion), Section 5.3 shows how the particular arrangements of eigenvalues and
eigenvectors of the coefficient matrix A correspond to identifiable patterns—
“fingerprints,” so to speak—in the phase plane portrait of the system x0 D Ax.
The resulting gallery is shown in the two pages of phase plane portraits that
comprise Figure 5.3.16 (pages 327-328) at the end of the section. The new 5.3
application module (on dynamic phase plane portraits, page 331) shows how
students can use interactive computer systems to “bring to life” this gallery, by
allowing initial conditions, eigenvalues, and even eigenvectors to vary in real
time. This dynamic approach is then illustrated with several new graphics in-
serted in the remainder of Chapter 5. Finally, for a new biological application,
see the application module for Section 6.4, which now includes a substan-
tial investigation (page 435) of the nonlinear FitzHugh-Nagumo equations in
neuroscience, which were introduced to model the behavior of neurons in the
nervous system.

Computing Features

The following features highlight the computing technology that distinguishes much
of our exposition.

� Over 750 computer-generated figures show students vivid pictures of direction
fields, solution curves, and phase plane portraits that bring symbolic solutions
of differential equations to life.

� About 45 application modules follow key sections throughout the text. Most
of these applications outline “technology neutral” investigations illustrating
the use of technical computing systems and seek to actively engage students
in the application of new technology.

� A fresh numerical emphasis that is afforded by the early introduction of nu-
merical solution techniques in Chapter 2 (on mathematical models and nu-
merical methods). Here and in Chapter 4, where numerical techniques for
systems are treated, a concrete and tangible flavor is achieved by the inclu-
sion of numerical algorithms presented in parallel fashion for systems ranging
from graphing calculators to MATLAB.

10
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Modeling Features

Mathematical modeling is a goal and constant motivation for the study of differen-
tial equations. To sample the range of applications in this text, take a look at the
following questions:

� What explains the commonly observed time lag between indoor and outdoor
daily temperature oscillations? (Section 1.5)

� What makes the difference between doomsday and extinction in alligator pop-
ulations? (Section 2.1)

� How do a unicycle and a twoaxle car react differently to road bumps? (Sec-
tions 3.7 and 5.4)

� How can you predict the time of next perihelion passage of a newly observed
comet? (Section 4.3)

� Why might an earthquake demolish one building and leave standing the one
next door? (Section 5.4)

� What determines whether two species will live harmoniously together, or
whether competition will result in the extinction of one of them and the sur-
vival of the other? (Section 6.3)

� Why and when does non-linearity lead to chaos in biological and mechanical
systems? (Section 6.5)

� If a mass on a spring is periodically struck with a hammer, how does the be-

� Why are flagpoles hollow instead of solid? (Section 8.6)

� What explains the difference in the sounds of a guitar, a xylophone, and drum?
(Sections 9.6, 10.2, and 10.4)

Organization and Content

We have reshaped the usual approach and sequence of topics to accommodate new
technology and new perspectives. For instance:

� After a precis of first-order equations in Chapter 1 (though with the cover-
age of certain traditional symbolic methods streamlined a bit), Chapter 2 of-
fers an early introduction to mathematical modeling, stability and qualitative
properties of differential equations, and numerical methods—a combination
of topics that frequently are dispersed later in an introductory course. Chapter
3 includes the standard methods of solution of linear differential equations of
higher order, particularly those with constant coefficients, and provides an es-
pecially wide range of applications involving simple mechanical systems and
electrical circuits; the chapter ends with an elementary treatment of endpoint
problems and eigenvalues.

� Chapters 4 and 5 provide a flexible treatment of linear systems. Motivated
by current trends in science and engineering education and practice, Chap-
ter 4 offers an early, intuitive introduction to first-order systems, models, and
numerical approximation techniques. Chapter 5 begins with a self-contained

havior of the mass depend on the frequency of the hammer blows? (Section 7.6)

treatment of the linear algebra that is needed, and then presents the eigenvalue
approach to linear systems. It includes a wide range of applications (ranging
from railway cars to earthquakes) of all the various cases of the eigenvalue
method. Section 5.5 includes a fairly extensive treatment of matrix exponen-
tials, which are exploited in Section 5.6 on nonhomogeneous linear systems.
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� Chapter 6 on nonlinear systems and phenomena ranges from phase plane anal-
ysis to ecological and mechanical systems to a concluding section on chaos
and bifurcation in dynamical systems. Section 6.5 presents an elementary in-
troduction to such contemporary topics as period-doubling in biological and
mechanical systems, the pitchfork diagram, and the Lorenz strange attractor
(all illustrated with vivid computer graphics).

� Laplace transform methods (Chapter 7) and power series methods (Chapter 8)
follow the material on linear and nonlinear systems, but can be covered at any
earlier point (after Chapter 3) the instructor desires.

� Chapters 9 and 10 treat the applications of Fourier series, separation of vari-
ables, and Sturm-Liouville theory to partial differential equations and boundary
ary value problems. After the introduction of Fourier series, the three clas-
sical equations—the wave and heat equations and Laplace’s equation—are
discussed in the last three sections of Chapter 9. The eigenvalue methods of
Chapter 10 are developed sufficiently to include some rather significant and
realistic applications.

Student and Instructor Resources

The answer section has been expanded considerably to increase its value as a learn-
ing aid. It now includes the answers to most odd-numbered problems plus a good
many even-numbered ones. The Instructor’s Solutions Manual
www.pearsonglobaleditions.com/edwards provides worked-out solutions
for most of the problems in the book. This manual has been reworked extensivly
for this edition with improved explanations and more details inserted in the solutions
of many problems.

The approximately 45 application modules in the text contain additional

Applications Manual that accompanies thet extand

in this manual has parallel subsections Using Maple, Using
and Using MATLAB that detail the applicable methods and techniques

Applications Manual itself—are freely available at the web site
.

available at

Mathe

problem and project material designed largely to engage students in the explora-
tion and application of computational technology. These investigations are expa-
nded considerably in the
supplements it with additional and sometimes more challenging investigations.
Each section
matica,
of each system, and will afford student users an opportunity to compare the merits
and of different computational systems. These materials—as well as the text of
the
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1.1 Differential Equations and Mathematical Models

The laws of the universe are written in the language of mathematics. Algebra
is sufficient to solve many static problems, but the most interesting natural

phenomena involve change and are described by equations that relate changing
quantities.

Because the derivative dx=dt D f 0.t/ of the function f is the rate at which
the quantity x D f .t/ is changing with respect to the independent variable t , it
is natural that equations involving derivatives are frequently used to describe the
changing universe. An equation relating an unknown function and one or more of
its derivatives is called a differential equation.

Example 1 The differential equation
dx

dt
D x2 C t2

involves both the unknown function x.t/ and its first derivative x0.t/D dx=dt . The differential
equation

d2y

dx2
C 3 dy

dx
C 7y D 0

involves the unknown function y of the independent variable x and the first two derivatives
y0 and y00 of y.

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical
situation.

2. To find—either exactly or approximately—the appropriate solution of that
equation.

3. To interpret the solution that is found.

In algebra, we typically seek the unknown numbers that satisfy an equation
such as x3C 7x2 � 11xC 41D 0. By contrast, in solving a differential equation, we
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Chapter 1 First-Order Differential Equations

are challenged to find the unknown functions y D y.x/ for which an identity such
as y0.x/ D 2xy.x/—that is, the differential equation

dy

dx
D 2xy

—holds on some interval of real numbers. Ordinarily, we will want to find all
solutions of the differential equation, if possible.

Example 2 If C is a constant and

y.x/ D Cex2

; (1)

then
dy

dx
D C

�
2xex2

�
D .2x/

�
Cex2

�
D 2xy:

Thus every function y.x/ of the form in Eq. (1) satisfies—and thus is a solution of—the
differential equation

dy

dx
D 2xy (2)

for all x. In particular, Eq. (1) defines an infinite family of different solutions of this differen-
tial equation, one for each choice of the arbitrary constant C . By the method of separation of
variables (Section 1.4) it can be shown that every solution of the differential equation in (2)
is of the form in Eq. (1).

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and
principles into differential equations. In each of these examples the independent
variable is time t , but we will see numerous examples in which some quantity other
than time is the independent variable.

Example 3 Newton’s law of cooling may be stated in this way: The time rate of change (the rate of
change with respect to time t) of the temperature T .t/ of a body is proportional to the differ-
ence between T and the temperature A of the surrounding medium (Fig. 1.1.1). That is,

dT

dt
D �k.T � A/; (3)

where k is a positive constant. Observe that if T > A, then dT=dt < 0, so the temperature is
a decreasing function of t and the body is cooling. But if T < A, then dT=dt > 0, so that T
is increasing.

Thus the physical law is translated into a differential equation. If we are given the
values of k and A, we should be able to find an explicit formula for T .t/, and then—with the
aid of this formula—we can predict the future temperature of the body.

Temperature T

Temperature A

FIGURE 1.1.1. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

Example 4 Torricelli’s law implies that the time rate of change of the volume V of water in a draining
tank (Fig. 1.1.2) is proportional to the square root of the depth y of water in the tank:

dV

dt
D �kpy; (4)

where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional area A,
then V D Ay, so dV=dt D A � .dy=dt/. In this case Eq. (4) takes the form

dy

dt
D �hpy; (5)

where h D k=A is a constant.
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1.1 Differential Equations and Mathematical Models

Example 5 The time rate of change of a population P.t/ with constant birth and death rates is, in many
simple cases, proportional to the size of the population. That is,

dP
dt
D kP; (6)

where k is the constant of proportionality.

Let us discuss Example 5 further. Note first that each function of the form

P.t/ D Cekt (7)

is a solution of the differential equation

dP
dt
D kP

in (6). We verify this assertion as follows:

yVolume V

FIGURE 1.1.2. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

P 0.t/ D Ckekt D k
�
Cekt

�
D kP.t/

for all real numbers t . Because substitution of each function of the form given in
(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant k is known, the differential equation
dP=dt D kP has infinitely many different solutions of the form P.t/D Cekt , one for
each choice of the “arbitrary” constant C . This is typical of differential equations.
It is also fortunate, because it may allow us to use additional information to select
from among all these solutions a particular one that fits the situation under study.

Example 6 Suppose that P.t/ D Cekt is the population of a colony of bacteria at time t , that the pop-
ulation at time t D 0 (hours, h) was 1000, and that the population doubled after 1 h. This
additional information about P.t/ yields the following equations:

1000 D P.0/ D Ce0 D C;
2000 D P.1/ D Cek :

It follows that C D 1000 and that ek D 2, so k D ln 2 � 0:693147. With this value of k the
differential equation in (6) is

dP
dt
D .ln 2/P � .0:693147/P:

Substitution of k D ln 2 and C D 1000 in Eq. (7) yields the particular solution

P.t/ D 1000e.ln 2/t D 1000.eln 2/t D 1000 � 2t (because eln 2 D 2)
that satisfies the given conditions. We can use this particular solution to predict future popu-
lations of the bacteria colony. For instance, the predicted number of bacteria in the population
after one and a half hours (when t D 1:5) is

P.1:5/ D 1000 � 23=2 � 2828:

The condition P.0/D 1000 in Example 6 is called an initial condition because
we frequently write differential equations for which t D 0 is the “starting time.”
Figure 1.1.3 shows several different graphs of the form P.t/ D Cekt with k D ln 2.
The graphs of all the infinitely many solutions of dP=dt D kP in fact fill the entire
two-dimensional plane, and no two intersect. Moreover, the selection of any one
point P0 on the P -axis amounts to a determination of P.0/. Because exactly one
solution passes through each such point, we see in this case that an initial condition
P.0/ D P0 determines a unique solution agreeing with the given data.

0 1 2 3

t

0P

–2

–1

–4

–2

–6

–8

2

4

6

8
C = 12 C = 6 C = 3

C = –6

C = 1
2

C = – 1
2

C = 1

C = –1

C = –3C = –12

FIGURE 1.1.3. Graphs of
P.t/ D Cekt with k D ln 2.
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Chapter 1 First-Order Differential Equations

Mathematical Models

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial
process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the
construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.
3. The interpretation of the mathematical results in the context of the original

real-world situation—for example, answering the question originally posed.

Real-world
situation

Mathematical
model

Mathematical
results

Mathematical
analysis

Formulation Interpretation

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the
population at some future time. A mathematical model consists of a list of vari-
ables (P and t) that describe the given situation, together with one or more equations
relating these variables (dP=dt D kP , P.0/ D P0) that are known or are assumed to
hold. The mathematical analysis consists of solving these equations (here, for P as
a function of t). Finally, we apply these mathematical results to attempt to answer
the original real-world question.

As an example of this process, think of first formulating the mathematical
model consisting of the equations dP=dt D kP , P.0/ D 1000, describing the bac-
teria population of Example 6. Then our mathematical analysis there consisted of
solving for the solution function P.t/ D 1000e.ln 2/t D 1000 � 2t as our mathemat-
ical result. For an interpretation in terms of our real-world situation—the actual
bacteria population—we substituted t D 1:5 to obtain the predicted population of
P.1:5/ � 2828 bacteria after 1.5 hours. If, for instance, the bacteria population is
growing under ideal conditions of unlimited space and food supply, our prediction
may be quite accurate, in which case we conclude that the mathematical model is
adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential
equation accurately fits the actual population we’re studying. For instance, for no
choice of the constants C and k does the solution P.t/D Cekt in Eq. (7) accurately
describe the actual growth of the human population of the world over the past few
centuries. We must conclude that the differential equation dP=dt D kP is inadequate
for modeling the world population—which in recent decades has “leveled off” as
compared with the steeply climbing graphs in the upper half (P > 0) of Fig. 1.1.3.
With sufficient insight, we might formulate a new mathematical model including
a perhaps more complicated differential equation, one that takes into account such
factors as a limited food supply and the effect of increased population on birth and
death rates. With the formulation of this new mathematical model, we may attempt
to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise manner. If
we can solve the new differential equation, we get new solution functions to com-
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1.1 Differential Equations and Mathematical Models

pare with the real-world population. Indeed, a successful population analysis may
require refining the mathematical model still further as it is repeatedly measured
against real-world experience.

But in Example 6 we simply ignored any complicating factors that might af-
fect our bacteria population. This made the mathematical analysis quite simple,
perhaps unrealistically so. A satisfactory mathematical model is subject to two con-
tradictory requirements: It must be sufficiently detailed to represent the real-world
situation with relative accuracy, yet it must be sufficiently simple to make the math-
ematical analysis practical. If the model is so detailed that it fully represents the
physical situation, then the mathematical analysis may be too difficult to carry out.
If the model is too simple, the results may be so inaccurate as to be useless. Thus
there is an inevitable tradeoff between what is physically realistic and what is math-
ematically possible. The construction of a model that adequately bridges this gap
between realism and feasibility is therefore the most crucial and delicate step in
the process. Ways must be found to simplify the model mathematically without
sacrificing essential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of
this introductory section is devoted to simple examples and to standard terminology
used in discussing differential equations and their solutions.

Examples and Terminology

Example 7 If C is a constant and y.x/ D 1=.C � x/, then

dy

dx
D 1

.C � x/2 D y
2

if x 6D C . Thus

y.x/ D 1

C � x (8)

defines a solution of the differential equation

dy

dx
D y2 (9)

on any interval of real numbers not containing the point x D C . Actually, Eq. (8) defines a
one-parameter family of solutions of dy=dx D y2, one for each value of the arbitrary constant
or “parameter” C . With C D 1 we get the particular solution

y.x/ D 1

1 � x
that satisfies the initial condition y.0/ D 1. As indicated in Fig. 1.1.5, this solution is contin-
uous on the interval .�1; 1/ but has a vertical asymptote at x D 1.

Example 8 Verify that the function y.x/ D 2x1=2 � x1=2 ln x satisfies the differential equation

4x2y00 C y D 0 (10)

for all x > 0.
Solution First we compute the derivatives

y0.x/ D �1
2x

�1=2 ln x and y00.x/ D 1
4x

�3=2 ln x � 1
2x

�3=2:

Then substitution into Eq. (10) yields

4x2y00 C y D 4x2
�

1
4x

�3=2 ln x � 1
2x

�3=2
�
C 2x1=2 � x1=2 ln x D 0

if x is positive, so the differential equation is satisfied for all x > 0.
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Chapter 1 First-Order Differential Equations

The fact that we can write a differential equation is not enough to guarantee
that it has a solution. For example, it is clear that the differential equation

.y0/2 C y2 D �1 (11)

has no (real-valued) solution, because the sum of nonnegative numbers cannot be
negative. For a variation on this theme, note that the equation

.y0/2 C y2 D 0 (12)

obviously has only the (real-valued) solution y.x/ � 0. In our previous examples
any differential equation having at least one solution indeed had infinitely many.

The order of a differential equation is the order of the highest derivative that
appears in it. The differential equation of Example 8 is of second order, those in
Examples 2 through 7 are first-order equations, and

y.4/ C x2y.3/ C x5y D sin x

is a fourth-order equation. The most general form of an nth-order differential
equation with independent variable x and unknown function or dependent variable
y D y.x/ is

F
�
x; y; y0; y00; : : : ; y.n/

�
D 0; (13)

where F is a specific real-valued function of nC 2 variables.
Our use of the word solution has been until now somewhat informal. To be

precise, we say that the continuous function uD u.x/ is a solution of the differential
equation in (13) on the interval I provided that the derivatives u0, u00, : : : , u.n/ exist
on I and

F
�
x; u; u0; u00; : : : ; u.n/

�
D 0

for all x in I . For the sake of brevity, we may say that u D u.x/ satisfies the
differential equation in (13) on I .
Remark Recall from elementary calculus that a differentiable function on an open interval
is necessarily continuous there. This is why only a continuous function can qualify as a
(differentiable) solution of a differential equation on an interval.

0 5

0

5

(0, 1)

x

y

–5
–5

y = 1/(1 – x)

x = 1

FIGURE 1.1.5. The solution of
y0 D y2 defined by y.x/ D 1=.1 � x/.

Continued

Example 7 Figure 1.1.5 shows the two “connected” branches of the graph y D 1=.1 � x/. The left-hand
branch is the graph of a (continuous) solution of the differential equation y0 D y2 that is
defined on the interval .�1; 1/. The right-hand branch is the graph of a different solution of
the differential equation that is defined (and continuous) on the different interval .1;1/. So
the single formula y.x/ D 1=.1 � x/ actually defines two different solutions (with different
domains of definition) of the same differential equation y0 D y2.

Example 9 If A and B are constants and

y.x/ D A cos 3x C B sin 3x; (14)

then two successive differentiations yield

y0.x/ D �3A sin 3x C 3B cos 3x;

y00.x/ D �9A cos 3x � 9B sin 3x D �9y.x/
for all x. Consequently, Eq. (14) defines what it is natural to call a two-parameter family of
solutions of the second-order differential equation

y00 C 9y D 0 (15)

on the whole real number line. Figure 1.1.6 shows the graphs of several such solutions.
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1.1 Differential Equations and Mathematical Models

Although the differential equations in (11) and (12) are exceptions to the gen-
eral rule, we will see that an nth-order differential equation ordinarily has an n-
parameter family of solutions—one involving n different arbitrary constants or pa-

0 3

0

5

x

y

–5
–3

y1

y2

y3

FIGURE 1.1.6. The three solutions
y1.x/ D 3 cos 3x, y2.x/ D 2 sin 3x,
and y3.x/ D �3 cos 3x C 2 sin 3x of
the differential equation y00 C 9y D 0.

rameters.
In both Eqs. (11) and (12), the appearance of y0 as an implicitly defined func-

tion causes complications. For this reason, we will ordinarily assume that any dif-
ferential equation under study can be solved explicitly for the highest derivative that
appears; that is, that the equation can be written in the so-called normal form

y.n/ D G
�
x; y; y0; y00; : : : ; y.n�1/

�
; (16)

where G is a real-valued function of nC 1 variables. In addition, we will always
seek only real-valued solutions unless we warn the reader otherwise.

All the differential equations we have mentioned so far are ordinary differ-
ential equations, meaning that the unknown function (dependent variable) depends
on only a single independent variable. If the dependent variable is a function of
two or more independent variables, then partial derivatives are likely to be involved;
if they are, the equation is called a partial differential equation. For example, the
temperature u D u.x; t/ of a long thin uniform rod at the point x at time t satisfies
(under appropriate simple conditions) the partial differential equation

@u

@t
D k @

2u

@x2
;

where k is a constant (called the thermal diffusivity of the rod). In Chapters 1
through 8 we will be concerned only with ordinary differential equations and will
refer to them simply as differential equations.

In this chapter we concentrate on first-order differential equations of the form

dy

dx
D f .x; y/: (17)

We also will sample the wide range of applications of such equations. A typical
mathematical model of an applied situation will be an initial value problem, con-
sisting of a differential equation of the form in (17) together with an initial condi-
tion y.x0/ D y0. Note that we call y.x0/ D y0 an initial condition whether or not
x0 D 0. To solve the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0 (18)

means to find a differentiable function y D y.x/ that satisfies both conditions in
Eq. (18) on some interval containing x0.

Example 10 Given the solution y.x/ D 1=.C � x/ of the differential equation dy=dx D y2 discussed in
Example 7, solve the initial value problem

dy

dx
D y2; y.1/ D 2:

Solution We need only find a value of C so that the solution y.x/ D 1=.C � x/ satisfies the initial
condition y.1/ D 2. Substitution of the values x D 1 and y D 2 in the given solution yields

2 D y.1/ D 1

C � 1 ;
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Chapter 1 First-Order Differential Equations

so 2C � 2 D 1, and hence C D 3
2 . With this value of C we obtain the desired solution

(1, 2)

(2, –2)

0 5

0

5

x

y

–5
–5

y = 2/(3 – 2x)

x = 3/2

FIGURE 1.1.7. The solutions of
y0 D y2 defined by
y.x/ D 2=.3 � 2x/.

y.x/ D 1
3
2 � x

D 2

3 � 2x :

Figure 1.1.7 shows the two branches of the graph y D 2=.3 � 2x/. The left-hand branch is
the graph on .�1; 3

2 / of the solution of the given initial value problem y0 D y2, y.1/ D 2.
The right-hand branch passes through the point .2;�2/ and is therefore the graph on .3

2 ;1/
of the solution of the different initial value problem y0 D y2, y.2/ D �2.

The central question of greatest immediate interest to us is this: If we are given
a differential equation known to have a solution satisfying a given initial condition,
how do we actually find or compute that solution? And, once found, what can we do
with it? We will see that a relatively few simple techniques—separation of variables
(Section 1.4), solution of linear equations (Section 1.5), elementary substitution
methods (Section 1.6)—are enough to enable us to solve a variety of first-order
equations having impressive applications.

1.1 Problems
In Problems 1 through 12, verify by substitution that each
given function is a solution of the given differential equation.
Throughout these problems, primes denote derivatives with re-
spect to x.

1. y0 D 3x2; y D x3 C 7
2. y0 C 2y D 0; y D 3e�2x

3. y00 C 4y D 0; y1 D cos 2x, y2 D sin 2x
4. y00 D 9y; y1 D e3x , y2 D e�3x

5.
6. y00 C 4y0 C 4y D 0; y1 D e�2x , y2 D xe�2x

7.
8. y00CyD 3 cos 2x, y1D cos x�cos 2x, y2D sin x�cos 2x

9.

10. x2y00 C xy0 � y D ln x; y1 D x � ln x, y2 D
1

x
� ln x

11. x2y00 C 5xy0 C 4y D 0; y1 D
1

x2
, y2 D

ln x
x2

12.

In Problems 13 through 16, substitute y D erx into the given
differential equation to determine all values of the constant r
for which y D erx is a solution of the equation.

13. 3y0 D 2y 14. 4y00 D y
15. y00 0 D 0 16. 00 0 � y D 0

In Problems 17 through 26, first verify that y.x/ satisfies the
given differential equation. Then determine a value of the con-
stant C so that y.x/ satisfies the given initial condition. Use a
computer or graphing calculator (if desired) to sketch several
typical solutions of the given differential equation, and high-
light the one that satisfies the given initial condition.

17. y0 C y D 0; y.x/ D Ce�x , y.0/ D 2
18. y0 D 2y; y.x/ D Ce2x , y.0/ D 3
19. y0 D y C 1; y.x/ D Cex � 1, y.0/ D 5

20. y0 D x � y; y.x/ D Ce�x C x � 1, y.0/ D 10
21. y0 C 3x2y D 0; y.x/ D Ce�x3

, y.0/ D 7
22. eyy0 D 1; y.x/ D ln.x C C/, y.0/ D 0
23. x

dy

dx
C 3y D 2x5; y.x/ D 1

4x
5 C Cx�3, y.2/ D 1

24. xy0 � 3y D x3; y.x/ D x3.C C ln x/, y.1/ D 17
25. y0 D 3x2.y2 C 1/; y.x/ D tan.x3 C C/, y.0/ D 1
26. y0 C y tan x D cos x; y.x/ D .x C C/ cos x, y.�/ D 0

In Problems 27 through 31, a function y D g.x/ is described
by some geometric property of its graph. Write a differential
equation of the form dy=dx D f .x; y/ having the function g as
its solution (or as one of its solutions).

27. The slope of the graph of g at the point .x; y/ is the pro-
x and y.

28. The line tangent to the graph of g at the point .x; y/ inter-
sects the -axis at the point .0; 4y/.

29. Every straight line normal to the graph of g passes through
the point .0; 1/. Can you guess what the graph of such a
function g might look like?

30. The graph of g is normal to every curve of the form
y D x2 C k (k is a constant) where they meet.

31. The line tangent to the graph of g at .x; y/ passes through
the point .�y; x/.

In Problems 32 through 36, write—in the manner of Eqs. (3)
through (6) of this section—a differential equation that is a
mathematical model of the situation described.

32. The time rate of change of a population P is proportional
to the square root of P .

33. The time rate of change of the velocity v of a coasting
motorboat is proportional to the square of v.

34. The acceleration dv=dt of a Lamborghini is proportional
to the difference between 250 km/h and the velocity of the
car.

2 23x xy y e y e e= − = −  0

22 5 0; cos2 , sin 2x xy y y y e x y e x 00 0

2 1
sin 0;

1 cos
y y x y

x
 0

5y 6y

x y2 00 C 0 C D 0; y1 D

C C 1D D D

C D D �

3xy 2y

sin

( ) ( )
2

sin ln cos ln
,

x x
y

x x
  D

� C �5y 6y

duct of

y

x;
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1.1 Differential Equations and Mathematical Models

35. In a city having a fixed population of P persons, the time
rate of change of the numberN of those persons who have
heard a certain rumor is proportional to the number of
those who have not yet heard the rumor.

36. In a city with a fixed population of P persons, the time rate
of change of the number N of those persons infected with
a certain contagious disease is proportional to the product
of the number who have the disease and the number who
do not.

In Problems 37 through 42, determine by inspection at least
one solution of the given differential equation. That is, use
your knowledge of derivatives to make an intelligent guess.
Then test your hypothesis.

37. y00 D 0 38. y0 D y
39. xy0 y D x 40. .y0/2 C y2 D 1
41. y0 C D e x 42. y00 C y D 0

Problems 43 through 46 concern the differential equation

dx

dt
D kx2;

where k is a constant.

43. (a) If k is a constant, show that a general (one-parameter)
solution of the differential equation is given by x.t/D
1=.C � kt/, where C is an arbitrary constant.

(b) Determine by inspection a solution of the initial value
problem x0 D kx2, x.0/ D 0.

44. (a) Assume that k is positive, and then sketch graphs of
solutions of x0 D kx2 with several typical positive
values of x.0/.

(b) How would these solutions differ if the constant k
were negative?

45. Suppose a population P of rodents satisfies the differen-
tial equation dP=dt D kP 2. Initially, there are P.0/ D 2

rodents, and their number is increasing at the rate of
dP=dt D 1 rodent per month when there are P D 10 ro-
dents. Based on the result of Problem 43, how long will it
take for this population to grow to a hundred rodents? To
a thousand? What’s happening here?

46. Suppose the velocity v of a motorboat coasting in water
satisfies the differential equation dv=dt D kv2. The ini-
tial speed of the motorboat is v.0/ D 10 meters per sec-
ond (m/s), and v is decreasing at the rate of 1 m/s2 when
v D 5 m/s. Based on the result of Problem 43, long does
it take for the velocity of the boat to decrease to 1 m/s? To
1

10 m/s? When does the boat come to a stop?
47. In Example 7 we saw that y.x/ D 1=.C � x/ defines a

one-parameter family of solutions of the differential equa-
tion dy=dx D y2. (a) Determine a value of C so that
y.10/ D 10. (b) Is there a value of C such that y.0/ D 0?
Can you nevertheless find by inspection a solution of
dy=dx D y2 such that y.0/ D 0? (c) Figure 1.1.8 shows
typical graphs of solutions of the form y.x/ D 1=.C � x/.
Does it appear that these solution curves fill the entire xy-
plane? Can you conclude that, given any point .a; b/ in
the plane, the differential equation dy=dx D y2 has ex-
actly one solution y.x/ satisfying the condition y.a/ D b?

48. (a) Show that y.x/ D Cx4 defines a one-parameter fam-
ily of differentiable solutions of the differential equation
xy0 D 4y (Fig. 1.1.9). (b) Show that

y.x/ D
(
�x4 if x < 0,

x4 if x = 0

defines a differentiable solution of xy0D 4y for all x, but is
not of the form y.x/ D Cx4. (c) Given any two real num-
bers a and b, explain why—in contrast to the situation in
part (c) of Problem 47—there exist infinitely many differ-
entiable solutions of xy0 D 4y that all satisfy the condition
y.a/ D b.
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FIGURE 1.1.8. Graphs of solutions of the
equation dy=dx D y2.
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Chapter 1 First-Order Differential Equations

1.2 Integrals as General and Particular Solutions

The first-order equation dy=dx D f .x; y/ takes an especially simple form if the
right-hand-side function f does not actually involve the dependent variable y, so

dy

dx
D f .x/: (1)

In this special case we need only integrate both sides of Eq. (1) to obtain

y.x/ D
Z
f .x/ dx C C: (2)

This is a general solution of Eq. (1), meaning that it involves an arbitrary constant
C , and for every choice of C it is a solution of the differential equation in (1). If
G.x/ is a particular antiderivative of f—that is, if G0.x/ � f .x/—then

y.x/ D G.x/C C: (3)

The graphs of any two such solutions y1.x/DG.x/CC1 and y2.x/DG.x/C

0 2 431
x

y

–2 –1–4 –3

4

3

2

1

0

–1
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–4

C = –1

C = –2

C = 3

C = 2

C = 1

C = 0

C = –3

FIGURE 1.2.1. Graphs of
y D 1

4
x2 C C for various values of C .

C2 on the same interval I are “parallel” in the sense illustrated by Figs. 1.2.1 and
1.2.2. There we see that the constant C is geometrically the vertical distance be-
tween the two curves y.x/ D G.x/ and y.x/ D G.x/C C .

x
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C = –4

C = –2

C = 0

C = 2
C = 4

FIGURE 1.2.2. Graphs of
y D sin x C C for various values of C .

To satisfy an initial condition y.x0/ D y0, we need only substitute x D x0 and
y D y0 into Eq. (3) to obtain y0 D G.x0/C C , so that C D y0 � G.x0/. With this
choice of C , we obtain the particular solution of Eq. (1) satisfying the initial value
problem

dy

dx
D f .x/; y.x0/ D y0:

We will see that this is the typical pattern for solutions of first-order differential
equations. Ordinarily, we will first find a general solution involving an arbitrary
constant C . We can then attempt to obtain, by appropriate choice of C , a particular
solution satisfying a given initial condition y.x0/ D y0.
Remark As the term is used in the previous paragraph, a general solution of a first-order
differential equation is simply a one-parameter family of solutions. A natural question is
whether a given general solution contains every particular solution of the differential equa-
tion. When this is known to be true, we call it the general solution of the differential equation.
For example, because any two antiderivatives of the same function f .x/ can differ only by a
constant, it follows that every solution of Eq. (1) is of the form in (2). Thus Eq. (2) serves to
define the general solution of (1).

Example 1 Solve the initial value problem

dy

dx
D 2x C 3; y.1/ D 2:

Solution Integration of both sides of the differential equation as in Eq. (2) immediately yields the
general solution

y.x/ D
Z
.2x C 3/ dx D x2 C 3x C C:

Figure 1.2.3 shows the graph yD x2C3xCC for various values of C . The particular solution
we seek corresponds to the curve that passes through the point .1; 2/, thereby satisfying the
initial condition

y.1/ D .1/2 C 3 � .1/C C D 2:
It follows that C D �2, so the desired particular solution is

y.x/ D x2 C 3x � 2:
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1.2 Integrals as General and Particular Solutions

Second-order equations. The observation that the special first-order equation
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FIGURE 1.2.3. Solution curves for
the differential equation in Example 1.

dy=dx D f .x/ is readily solvable (provided that an antiderivative of f can be found)
extends to second-order differential equations of the special form

d2y

dx2
D g.x/; (4)

in which the function g on the right-hand side involves neither the dependent vari-
able y nor its derivative dy=dx. We simply integrate once to obtain

dy

dx
D
Z
y00.x/ dx D

Z
g.x/ dx D G.x/C C1;

where G is an antiderivative of g and C1 is an arbitrary constant. Then another
integration yields

y.x/ D
Z
y0.x/ dx D

Z
ŒG.x/C C1� dx D

Z
G.x/ dx C C1x C C2;

where C2 is a second arbitrary constant. In effect, the second-order differential
equation in (4) is one that can be solved by solving successively the first-order
equations

dv

dx
D g.x/ and

dy

dx
D v.x/:

Velocity and Acceleration

Direct integration is sufficient to allow us to solve a number of important problems
concerning the motion of a particle (or mass point) in terms of the forces acting
on it. The motion of a particle along a straight line (the x-axis) is described by its
position function

x D f .t/ (5)

giving its x-coordinate at time t . The velocity of the particle is defined to be

v.t/ D f 0.t/I that is, v D dx

dt
: (6)

Its acceleration a.t/ is a.t/ D v0.t/ D x00.t/; in Leibniz notation,

a D dv

dt
D d2x

dt2
: (7)

Equation (6) is sometimes applied either in the indefinite integral form x.t/DR
v.t/ dt or in the definite integral form

x.t/ D x.t0/C
Z t

t0

v.s/ ds;

which you should recognize as a statement of the fundamental theorem of calculus
(precisely because dx=dt D v).

Newton’s second law of motion says that if a force F.t/ acts on the particle
and is directed along its line of motion, then

ma.t/ D F.t/I that is, F D ma; (8)
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Chapter 1 First-Order Differential Equations

where m is the mass of the particle. If the force F is known, then the equation
x00.t/ D F.t/=m can be integrated twice to find the position function x.t/ in terms
of two constants of integration. These two arbitrary constants are frequently deter-
mined by the initial position x0 D x.0/ and the initial velocity v0 D v.0/ of the
particle.

Constant acceleration. For instance, suppose that the force F , and therefore the
acceleration a D F=m, are constant. Then we begin with the equation

dv

dt
D a (a is a constant) (9)

and integrate both sides to obtain

v.t/ D
Z
a dt D at C C1:

We know that v D v0 when t D 0, and substitution of this information into the
preceding equation yields the fact that C1 D v0. So

v.t/ D dx

dt
D at C v0: (10)

A second integration gives

x.t/ D
Z
v.t/ dt D

Z
.at C v0/ dt D 1

2
at2 C v0t C C2;

and the substitution t D 0, x D x0 gives C2 D x0. Therefore,

x.t/ D 1
2
at2 C v0t C x0: (11)

Thus, with Eq. (10) we can find the velocity, and with Eq. (11) the position, of
the particle at any time t in terms of its constant acceleration a, its initial velocity
v0, and its initial position x0.

Example 2 A lunar lander is falling freely toward the surface of the moon at a speed of 450 meters per
second (m=s). Its retrorockets, when fired, provide a constant deceleration of 2.5 meters per
second per second (m=s2) (the gravitational acceleration produced by the moon is assumed
to be included in the given deceleration). At what height above the lunar surface should the
retrorockets be activated to ensure a “soft touchdown” (v D 0 at impact)?

Solution We denote by x.t/ the height of the lunar lander above the surface, as indicated in Fig. 1.2.4.
We let t D 0 denote the time at which the retrorockets should be fired. Then v0 D �450

Lunar surface

a υ

FIGURE 1.2.4. The lunar lander of
Example 2.

(m=s, negative because the height x.t/ is decreasing), and a D C2:5, because an upward
thrust increases the velocity v (although it decreases the speed jvj). Then Eqs. (10) and (11)
become

v.t/ D 2:5t � 450 (12)

and
x.t/ D 1:25t2 � 450t C x0; (13)

where x0 is the height of the lander above the lunar surface at the time t D 0 when the
retrorockets should be activated.

From Eq. (12) we see that v D 0 (soft touchdown) occurs when t D 450=2:5 D 180 s
(that is, 3 minutes); then substitution of t D 180, x D 0 into Eq. (13) yields

x0 D 0 � .1:25/.180/2 C 450.180/ D 40;500
meters—that is, x0 D 40.5 km � 251

6 miles. Thus the retrorockets should be activated when
the lunar lander is 40.5 kilometers above the surface of the moon, and it will touch down
softly on the lunar surface after 3 minutes of decelerating descent.
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Physical Units

Numerical work requires units for the measurement of physical quantities such as
distance and time. We sometimes use ad hoc units—such as distance in miles or
kilometers and time in hours—in special situations (such as in a problem involving
an auto trip). However, the foot-pound-second (fps) and meter-kilogram-second
(mks) unit systems are used more generally in scientific and engineering problems.
In fact, fps units are commonly used only in the United States (and a few other
countries), while mks units constitute the standard international system of scientific
units.

fps units mks units

Force

Mass

Distance

Time

g

pound (lb)

slug

foot (ft)

second (s)

32 ft/s2

newton (N)

kilogram (kg)

meter (m)

second (s)

9.8 m/s2

The last line of this table gives values for the gravitational acceleration g at
the surface of the earth. Although these approximate values will suffice for most
examples and problems, more precise values are 9:7805 m=s2 and 32:088 ft=s2 (at
sea level at the equator).

Both systems are compatible with Newton’s second law F D ma. Thus 1 N is
(by definition) the force required to impart an acceleration of 1 m=s2 to a mass of 1
kg. Similarly, 1 slug is (by definition) the mass that experiences an acceleration of
1 ft=s2 under a force of 1 lb. (We will use mks units in all problems requiring mass
units and thus will rarely need slugs to measure mass.)

Inches and centimeters (as well as miles and kilometers) also are commonly
used in describing distances. For conversions between fps and mks units it helps to
remember that

1 in. D 2.54 cm (exactly) and 1 lb � 4.448 N:

For instance,

1 ft D 12 in. � 2:54cm
in.
D 30.48 cm;

and it follows that

1 mi D 5280 ft � 30:48cm
ft
D 160934.4 cm � 1.609 km:

Thus a posted U.S. speed limit of 50 mi=h means that—in international terms—the
legal speed limit is about 50 � 1:609 � 80:45 km=h.

Vertical Motion with Gravitational Acceleration

The weight W of a body is the force exerted on the body by gravity. Substitution of
a D g and F D W in Newton’s second law F D ma gives

W D mg (14)
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for the weightW of the massm at the surface of the earth (where g � 32 ft=s2 � 9:8
m=s2). For instance, a mass ofmD 20 kg has a weight ofW D (20 kg)(9.8 m=s2)D
196 N. Similarly, a mass m weighing 100 pounds has mks weight

W D (100 lb)(4.448 N=lb) D 444.8 N;

so its mass is

m D W

g
D 444.8 N

9.8 m=s2
� 45.4 kg:

To discuss vertical motion it is natural to choose the y-axis as the coordinate
system for position, frequently with y D 0 corresponding to “ground level.” If we
choose the upward direction as the positive direction, then the effect of gravity on a
vertically moving body is to decrease its height and also to decrease its velocity v D
dy=dt . Consequently, if we ignore air resistance, then the acceleration a D dv=dt of
the body is given by

dv

dt
D �g: (15)

This acceleration equation provides a starting point in many problems involving
vertical motion. Successive integrations (as in Eqs. (10) and (11)) yield the velocity
and height formulas

v.t/ D �gt C v0 (16)
and

y.t/ D �1
2
gt2 C v0t C y0: (17)

Here, y0 denotes the initial (t D 0) height of the body and v0 its initial velocity.

Example 3 (a) Suppose that a ball is thrown straight upward from the ground (y0 D 0) with initial
velocity v0 D 96 (ft=s, so we use g D 32 ft=s2 in fps units). Then it reaches its maximum
height when its velocity (Eq. (16)) is zero,

v.t/ D �32t C 96 D 0;
and thus when t D 3 s. Hence the maximum height that the ball attains is

y.3/ D �1
2 � 32 � 32 C 96 � 3C 0 D 144 (ft)

(with the aid of Eq. (17)).
(b) If an arrow is shot straight upward from the ground with initial velocity v0 D 49 (m=s,
so we use g D 9:8 m=s2 in mks units), then it returns to the ground when

y.t/ D �1
2 � .9:8/t2 C 49t D .4:9/t.�t C 10/ D 0;

and thus after 10 s in the air.

A Swimmer’s Problem

Figure 1.2.5 shows a northward-flowing river of width w D 2a. The lines x D ˙a
represent the banks of the river and the y-axis its center. Suppose that the velocity
vR at which the water flows increases as one approaches the center of the river, and
indeed is given in terms of distance x from the center by

vR D v0

�
1 � x

2

a2

�
: (18)

You can use Eq. (18) to verify that the water does flow the fastest at the center,
where vR D v0, and that vR D 0 at each riverbank.

x-axis

y-axis

(a, 0)(–a, 0)

υR

υS

υS

υR

α

FIGURE 1.2.5. A swimmer’s
problem (Example 4).
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1.2 Integrals as General and Particular Solutions

Suppose that a swimmer starts at the point .�a; 0/ on the west bank and swims
due east (relative to the water) with constant speed vS . As indicated in Fig. 1.2.5, his
velocity vector (relative to the riverbed) has horizontal component vS and vertical
component vR. Hence the swimmer’s direction angle ˛ is given by

tan˛ D vR

vS

:

Because tan˛ D dy=dx, substitution using (18) gives the differential equation

dy

dx
D v0

vS

�
1 � x

2

a2

�
(19)

for the swimmer’s trajectory y D y.x/ as he crosses the river.

Example 4 Suppose that the river is 1 mile wide and that its midstream velocity is v0 D 9 mi=h. If the
swimmer’s velocity is vS D 3 mi=h, then Eq. (19) takes the form

dy

dx
D 3.1 � 4x2/:

Integration yields

y.x/ D
Z
.3 � 12x2/ dx D 3x � 4x3 C C

for the swimmer’s trajectory. The initial condition y
�
�1

2

�
D 0 yields C D 1, so

y.x/ D 3x � 4x3 C 1:

Then

y
�

1
2

�
D 3

�
1
2

�
� 4

�
1
2

�3
C 1 D 2;

so the swimmer drifts 2 miles downstream while he swims 1 mile across the river.

1.2 Problems
In Problems 1 through 10, find a function y D f .x/ satisfy-
ing the given differential equation and the prescribed initial
condition.

1.
dy

dx
D 2x C 1; y.0/ D 3

2.
dy

dx
D .x � 2/2; y.2/ D 1

3.
dy

dx
D px; y.4/ D 0

4.
dy

dx
D
x

; y.2/ D

5.
dy

dx
D 1p

x C 2 ; y.2/ D �1

6.

7.
dy

dx
D
x2 C ; y.0/ D 8.

dy

dx
D cos 2x; y.0/ D 1

9.
dy

dx
D 1p

1 � x2
; y.0/ D 0 10.

dy

dx
D xe�x ; y.0/ D 1

In Problems 11 through 18, find the position function x.t/ of a
moving particle with the given acceleration a.t/, initial posi-
tion x0 D x.0/, and initial velocity v0 D v.0/.
11. a.t/ D 50, v0 D 10, x0 D 20
12. a.t/ D �20, v0 D �15, x0 D 5
13. a.t/ D 3t , v0 D 5, x0 D 0
14. a.t/ D 2t C 1, v0 D �7, x0 D 4
15. a.t/ D 4.t C 3/2, v0 D �1, x0 D 1

16. a.t/ D 1p
t C , v0 D , x0 D

17. a.t/ D 1

.t C 1/3 , v0 D 0, x0 D 0

18. a.t/ D t , v0 D , x0 D

In Problems 19 through 22, a particle starts at the origin and
travels along the x-axis with the velocity function v.t/ whose
graph is shown in Figs. 1.2.6 through 1.2.9. Sketch the graph
of the resulting position function x.t/ for 0 5 t 5 10.

4
3

3

dy

dx
D e ; y.0/ D2x �x2

3

6

4
4

9
2 4

18cos3 4 �7
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19.

(5, 5)
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FIGURE 1.2.6. Graph of the
velocity function v.t/ of Problem 19.

20.

(5, 5)
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FIGURE 1.2.7. Graph of the
velocity function v.t/ of Problem 20.

21.

(5, 5)
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FIGURE 1.2.8. Graph of the
velocity function v.t/ of Problem 21.

22.

(3, 5) (7, 5)
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FIGURE 1.2.9. Graph of the
velocity function v.t/ of Problem 22.

23. What is the maximum height attained by the arrow of part
(b) of Example 3?

24. A ball is dropped from the top of a building that is

25. The brakes of a car are applied when it is moving at 100
km=h and provide a constant deceleration of 10meters per
second per second (m=s2). How far does the car travel be-
fore coming to a stop?

26. A projectile is fired straight upward with an initial veloc-
ity of 100 m=s from the top of a building 20 m high and
falls to the ground at the base of the building. Find (a) its
maximum height above the ground; (b) when it passes the
top of the building; (c) its total time in the air.

27. A ball is thrown straight downward from the top of a tall
building. The initial speed of the ball is 10 m=s. It strikes
the ground with a speed of 60 m=s. How tall is the build-
ing?

28. A baseball is thrown straight downward with an initial
speed of 40 ft=s from the top of the Washington Monu-
ment (555 ft high). How long does it take to reach the
ground, and with what speed does the baseball strike the
ground?

29. A diesel car gradually speeds up so that for the first 10 s
its acceleration is given by

dv

dt
D .0:12/t2 C .0:6/t (ft=s2).

If the car starts from rest (x0D 0, v0D 0), find the distance
it has traveled at the end of the first 10 s and its velocity at
that time.

30. A car traveling at 72 km=h (20 m=s) skids 50 m after its
brakes are suddenly applied. Under the assumption that
the braking system provides constant deceleration, what
is that deceleration? For how long does the skid continue?

31. The skid marks made by an automobile indicated that its
brakes were fully applied for a distance of 75 m before
it came to a stop. The car in question is known to have
a constant deceleration of 20 m=s2 under these condi-
tions. How fast—in km=h—was the car traveling when
the brakes were first applied?

32. Suppose that a car skids 15 m if it is moving at 50 km=h
when the brakes are applied. Assuming that the car has
the same constant deceleration, how far will it skid if it is
moving at 100 km=h when the brakes are applied?

33. On the planet Gzyx, a ball dropped from a height of 20 ft
hits the ground in 2 s. If a ball is dropped from the top of
a 200-ft-tall building on Gzyx, how long will it take to hit
the ground? With what speed will it hit?

34. A person can throw a ball straight upward from the sur-
face of the earth to a maximum height of 144 ft. How
high could this person throw the ball on the planet Gzyx
of Problem 33?

35. A stone is dropped from rest at an initial height h above
the surface of the earth. Show that the speed with which it
strikes the ground is v D

p
2gh.

162

28

meters high. How long does the ball take to reach the
ground? With what speed does it strike the ground?



1.3 Slope Fields and Solution Curves

36. Suppose a woman has enough “spring” in her legs to jump
(on earth) from the ground to a height of 2.25 feet. If
she jumps straight upward with the same initial velocity
on the moon—where the surface gravitational acceleration
is (approximately) 5.3 ft/s2—how high above the surface
will she rise?

37. At noon a car starts from rest at point A and proceeds at
constant acceleration along a straight road toward point
B . If the car reaches B at 12:40 P.M. with a velocity of

=h, what is the distance from A to B?

38. At noon a car starts from rest at point A and proceeds with
constant acceleration along a straight road toward pointC ,

C with a velocity of 80 km=h, at what time does it arrive
at C ?

39. If aD 0:5mi and v0 D 9mi=h as in Example 4, what must
the swimmer’s speed vS be in order that he drifts only 1
mile downstream as he crosses the river?

40. Suppose that a D 0:5 mi, v0 D 9 mi=h, and vS D 3 mi=h
as in Example 4, but that the velocity of the river is given
by the fourth-degree function

vR D v0

 
1 � x

4

a4

!

rather than the quadratic function in Eq. (18). Now find
how far downstream the swimmer drifts as he crosses the
river.

41. A bomb is dropped from a helicopter hovering at an alti-
tude of 800 feet above the ground. From the ground di-
rectly beneath the helicopter, a projectile is fired straight
upward toward the bomb, exactly 2 seconds after the bomb
is released. With what initial velocity should the projectile
be fired in order to hit the bomb at an altitude of exactly
400 feet?

42. A spacecraft is in free fall toward the surface of the moon
at a speed of 1000 mph (mi/h). Its retrorockets, when
fired, provide a constant deceleration of 20,000 mi/h2. At
what height above the lunar surface should the astronauts
fire the retrorockets to insure a soft touchdown? (As in
Example 2, ignore the moon’s gravitational field.)

43. Arthur Clarke’s The Wind from the Sun (1963) describes
Diana, a spacecraft propelled by the solar wind. Its alu-
minized sail provides it with a constant acceleration of
0:001g D 0:0098m/s2. Suppose this spacecraft starts from
rest at time t D 0 and simultaneously fires a projectile
(straight ahead in the same direction) that travels at one-
tenth of the speed c D 3� 108 m/s of light. How long will
it take the spacecraft to catch up with the projectile, and
how far will it have traveled by then?

44. A driver involved in an accident claims he was going only
25 mph. When police tested his car, they found that when
its brakes were applied at 25 mph, the car skidded only
45 feet before coming to a stop. But the driver’s skid
marks at the accident scene measured 210 feet. Assum-
ing the same (constant) deceleration, determine the speed
he was actually traveling just prior to the accident.

1.3 Slope Fields and Solution Curves

Consider a differential equation of the form

dy

dx
D f .x; y/ (1)

where the right-hand function f .x; y/ involves both the independent variable x and
the dependent variable y. We might think of integrating both sides in (1) with re-
spect to x, and hence write y.x/ D R

f .x; y.x// dx C C . However, this approach
does not lead to a solution of the differential equation, because the indicated integral
involves the unknown function y.x/ itself, and therefore cannot be evaluated explic-
itly. Actually, there exists no straightforward procedure by which a general differen-
tial equation can be solved explicitly. Indeed, the solutions of such a simple-looking
differential equation as y0 D x2 C y2 cannot be expressed in terms of the ordinary
elementary functions studied in calculus textbooks. Nevertheless, the graphical and
numerical methods of this and later sections can be used to construct approximate
solutions of differential equations that suffice for many practical purposes.

Slope Fields and Graphical Solutions

There is a simple geometric way to think about solutions of a given differential
equation y0 D f .x; y/. At each point .x; y/ of the xy-plane, the value of f .x; y/
determines a slope m D f .x; y/. A solution of the differential equation is simply
a differentiable function whose graph y D y.x/ has this “correct slope” at each

80 km

70 km away. If the constantly accelerated car arrives at
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point .x; y.x// through which it passes—that is, y0.x/ D f .x; y.x//. Thus a so-
lution curve of the differential equation y0 D f .x; y/—the graph of a solution of
the equation—is simply a curve in the xy-plane whose tangent line at each point
.x; y/ has slope m D f .x; y/. For instance, Fig. 1.3.1 shows a solution curve of
the differential equation y0 D x � y together with its tangent lines at three typical
points.

x

y

(x1, y1)

(x2, y2)

(x3, y3)

FIGURE 1.3.1. A solution curve for the differential equation
y0 D x � y together with tangent lines having

� slope m1 D x1 � y1 at the point .x1; y1/;
� slope m2 D x2 � y2 at the point .x2; y2/; and
� slope m3 D x3 � y3 at the point .x3; y3/.

This geometric viewpoint suggests a graphical method for constructing ap-
proximate solutions of the differential equation y0 D f .x; y/. Through each of a
representative collection of points .x; y/ in the plane we draw a short line segment
having the proper slope m D f .x; y/. All these line segments constitute a slope
field (or a direction field) for the equation y0 D f .x; y/.

Example 1 Figures 1.3.2 (a)–(d) show slope fields and solution curves for the differential equation

dy

dx
D ky (2)

with the values k D 2, 0:5, �1, and �3 of the parameter k in Eq. (2). Note that each slope
field yields important qualitative information about the set of all solutions of the differential
equation. For instance, Figs. 1.3.2(a) and (b) suggest that each solution y.x/ approaches˙1
as x ! C1 if k > 0, whereas Figs. 1.3.2(c) and (d) suggest that y.x/ ! 0 as x ! C1
if k < 0. Moreover, although the sign of k determines the direction of increase or decrease
of y.x/, its absolute value jkj appears to determine the rate of change of y.x/. All this is
apparent from slope fields like those in Fig. 1.3.2, even without knowing that the general
solution of Eq. (2) is given explicitly by y.x/ D Cekx .

A slope field suggests visually the general shapes of solution curves of the
differential equation. Through each point a solution curve should proceed in such
a direction that its tangent line is nearly parallel to the nearby line segments of the
slope field. Starting at any initial point .a; b/, we can attempt to sketch freehand an
approximate solution curve that threads its way through the slope field, following
the visible line segments as closely as possible.

Example 2 Construct a slope field for the differential equation y0 D x � y and use it to sketch an approx-
imate solution curve that passes through the point .�4; 4/.

Solution Figure 1.3.3 shows a table of slopes for the given equation. The numerical slope m D x � y
appears at the intersection of the horizontal x-row and the vertical y-column of the table. If
you inspect the pattern of upper-left to lower-right diagonals in this table, you can see that it

30




